## MATH 122B: MIDTERM

(1) Show that if $f$ is holomorphic in $D$, then

$$
f^{\prime}\left(z_{0}\right)=\frac{d f}{d z}\left(z_{0}\right)=\frac{\partial f}{\partial x}\left(z_{0}\right)=-i \frac{\partial f}{\partial y}\left(z_{0}\right)
$$

(2) Compute the integral $\int_{-\infty}^{\infty} \frac{\cos (2 x) d x}{x^{4}+1}$. Make sure to show that the answer you obtain is a real number.
(3) Compute $\int_{|z|=2} \frac{d z}{\left(z^{2016}+1\right)(z-3)(z-4)}$.
(4) Show that if $f$ is holomorphic on $\mathbb{C}$ and $|f(z)| \leq|z|$ for all $z \in \mathbb{C}$, then $f$ is a linear polynomial.
(5) Compute the Laurent series of $e^{z+\frac{1}{z}}$. Then compute the integral $\int_{|z|=1} e^{z+\frac{1}{z}}$. Show that your answer is a finite number.

## Solutions

(1) Let $z_{0}=x_{0}+i y_{0}$ and $f=u+i v$ be holomorphic. Then the derivative by definition is

$$
\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}=\frac{d f}{d z}\left(z_{0}\right)
$$

which exists for any path $h \rightarrow 0$ and they are equal. Consider $h \in \mathbb{R}$, then

$$
\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(z_{0}\right)}{h}=\frac{\partial f}{\partial x}\left(z_{0}\right)
$$

on the other hand,

$$
\lim _{h \rightarrow 0} \frac{f\left(z_{0}+i h\right)-f\left(z_{0}\right)}{i h}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}, y_{0}+h\right)-f\left(z_{0}\right)}{i h}=-i \frac{\partial f}{\partial y}\left(z_{0}\right) .
$$

(2) We use the semicircle contour $C_{R}$, with $\Gamma_{R}$ denoting the upper half circle. Then

$$
\int_{C_{R}} \frac{e^{i 2 z} d z}{z^{4}+1}=\int_{-R}^{R} \frac{e^{i 2 z} d z}{z^{4}+1}+\int_{\Gamma_{R}} \frac{e^{i 2 z} d z}{z^{4}+1} .
$$

By residue theorem, the integral over the closed contour is

$$
2 \pi i\left(\operatorname{Res}\left(\frac{e^{i 2 z}}{z^{4}+1}, e^{i \pi / 4}\right)+\operatorname{Res}\left(\frac{e^{i 2 z}}{z^{4}+1}, e^{3 \pi / 4}\right)\right)
$$

Computing, we have

$$
\begin{aligned}
\operatorname{Res}\left(\frac{e^{i 2 z}}{z^{4}+1}, e^{i \pi / 4}\right) & =\frac{e^{-\sqrt{2}+i \sqrt{2}}}{4 e^{3 i \pi / 4}} \\
\operatorname{Res}\left(\frac{e^{i 2 z}}{z^{4}+1}, e^{3 \pi / 4}\right) & =\frac{e^{-\sqrt{2}-i \sqrt{2}}}{4 e^{9 i \pi / 4}}
\end{aligned}
$$

We also have

$$
\left|\int_{\Gamma_{R}} \frac{e^{i 2 z} d z}{z^{4}+1}\right| \leq \frac{\pi R}{R^{4}+1} \rightarrow 0
$$

as $R \rightarrow \infty$.
Since $\operatorname{Re}\left(\int_{-R}^{R} \frac{e^{i 2 z}}{z^{4}+1} d z\right)=\int_{-R}^{R} \frac{\cos (2 z) d z}{z^{4}+1}$, taking the real part of the sum of the residue gives us the answer.
(3) By residue theorem, the singularity inside $|z|=2$ are the 2016-th roots of unity, denoted $\alpha_{n}$, hence

$$
\int_{|z|=2} \frac{d z}{\left(z^{2016}+1\right)(z-3)(z-4)}=2 \pi i \sum_{n=1}^{2016} \operatorname{Res}\left(\frac{1}{\left(z^{2016}+1\right)(z-3)(z-4)}, \alpha_{n}\right)
$$

To find a closed form, we use the fact that the sum of the residues is equal to zero hence

$$
\sum_{n=1}^{2016} \operatorname{Res}\left(f, \alpha_{n}\right)=-\operatorname{Res}(f, 3)-\operatorname{Res}(f, 4)-\operatorname{Res}(f, \infty)
$$

where $f=\frac{1}{\left(z^{2016}+1\right)(z-3)(z-4)}$. Since

$$
\begin{aligned}
\operatorname{Res}(f, 3) & =-\frac{1}{2016\left(3^{2015}\right)} \\
\operatorname{Res}(f, 4) & =\frac{1}{2016\left(4^{2015}\right)} \\
\operatorname{Res}(f, \infty) & =0
\end{aligned}
$$

we get

$$
\int_{|z|=2} \frac{d z}{\left(z^{2016}+1\right)(z-3)(z-4)}=2 \pi i\left(\frac{1}{2016\left(3^{2015}\right)}-\frac{1}{2016\left(4^{2015}\right)}\right) .
$$

(4) Let $z \in \mathbb{R}$. by Cauchy integral formula for the derivative, we have for any $R>0$,

$$
f^{\prime}(z)=\frac{1}{2 \pi i} \int_{|w-z|=R} \frac{f(w)}{(w-z)^{2}} d w
$$

Now

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & \leq \frac{1}{2 \pi} \int_{|w-z|=R} \frac{|f(w)|}{|w-z|^{2}} d w \\
& \leq \frac{1}{2 \pi R^{2}}(R+|z|) \int_{|w-z|=R} d w \\
& \leq \frac{R+|z|}{R} \leq 2
\end{aligned}
$$

for $R>|z|$, here we use the inequality $|w|=|w-z+z| \leq|w-z|+|z|$ in the numerator. Since $f^{\prime}$ is bounded and holomorphic in $\mathbb{C}, f^{\prime} \equiv A$, where $A$ is a constant. This implies that $f(z)=A z+B$ for some constant $B$, however, $f(0)=0$ hence $B=0$. Therefore $f(z)=A z$.
(5) To compute the Laurent series, we compute the simpler terms and take their product. We have

$$
\begin{aligned}
e^{z} & =\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \\
e^{\frac{1}{z}} & =\sum_{n=0}^{\infty} \frac{1}{n!z^{n}} .
\end{aligned}
$$

Taking their product, we have

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{z^{n-k}}{n!k!}=\sum_{p=-\infty}^{\infty}\left(\sum_{n-k=p} \frac{1}{n!k!}\right) z^{p} .
$$

Since there is an isolated singularity at $z=0$, the residue at 0 is given by the $z^{-1}$ coefficient, namely

$$
\operatorname{Res}\left(e^{z+\frac{1}{z}}, 0\right)=\sum_{n-k=-1} \frac{1}{n!k!}=\sum_{n=0}^{\infty} \frac{1}{n!(n+1)!}
$$

hence by the residue theorem,

$$
\int_{|z|=1} e^{z+\frac{1}{z}} d z=2 \pi i \sum_{n=0}^{\infty} \frac{1}{n!(n+1)!}
$$

By comparison test, we have

$$
\sum_{n=0}^{\infty} \frac{1}{n!(n+1)!} \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

